Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 469: 133875, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38457970

RESUMO

Selective relaxant binding agents (SRBA) have great potential in clinical surgeries for the precise reversal of neuromuscular blockades. Understanding the relationship between the structure-affinity-reversal effects of SRBA and neuromuscular blockade is crucial for the design of new SRBAs, which has rarely been explored. Seven anionic pillar[5]arenes (AP5As) with different aliphatic chains and anionic groups at both edges were designed. Their binding affinities to the neuromuscular blocking agent decamonium bromide (DMBr) were investigated using 1H NMR, isothermal titration calorimetry (ITC), and theoretical calculations. The results indicate that the capture of DMBr by AP5As is primarily driven by electrostatic interactions, ion-dipole interactions and C-H‧‧‧π interactions. The optimal size matching between the carboxylate AP5As and DMBr was ∼0.80. The binding affinity increased with an increase in the charge quantity of AP5As. Further animal experiments indicated that the reversal efficiency increased with increasing binding affinity for carboxylate or phosphonate AP5As. However, phosphonate AP5As exhibited lower reversal efficiencies than carboxylate AP5As, despite having stronger affinities with DMBr. By understanding the structure-affinity-reversal relationships, this study provides valuable insights into the design of innovative SRBAs for reversing neuromuscular blockade.


Assuntos
Bloqueadores Neuromusculares , Fármacos Neuromusculares não Despolarizantes , Organofosfonatos , gama-Ciclodextrinas , Animais , gama-Ciclodextrinas/farmacologia , Sugammadex , Bloqueadores Neuromusculares/farmacologia , Brometos
2.
Theranostics ; 14(2): 480-495, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169536

RESUMO

Background: The neurobiological basis of gaining consciousness from unconscious state induced by anesthetics remains unknown. This study was designed to investigate the involvement of the cerebello-thalamus-motor cortical loop mediating consciousness transitions from the loss of consciousness (LOC) induced by an inhalational anesthetic sevoflurane in mice. Methods: The neural tracing and fMRI together with opto-chemogenetic manipulation were used to investigate the potential link among cerebello-thalamus-motor cortical brain regions. The fiber photometry of calcium and neurotransmitters, including glutamate (Glu), γ-aminobutyric acid (GABA) and norepinephrine (NE), were monitored from the motor cortex (M1) and the 5th lobule of the cerebellar vermis (5Cb) during unconsciousness induced by sevoflurane and gaining consciousness after sevoflurane exposure. Cerebellar Purkinje cells were optogenetically manipulated to investigate their influence on consciousness transitions during and after sevoflurane exposure. Results: Activation of 5Cb Purkinje cells increased the Ca2+ flux in the M1 CaMKIIα+ neurons, but this increment was significantly reduced by inactivation of posterior and parafascicular thalamic nucleus. The 5Cb and M1 exhibited concerted calcium flux, and glutamate and GABA release during transitions from wakefulness, loss of consciousness, burst suppression to conscious recovery. Ca2+ flux and Glu release in the M1, but not in the 5Cb, showed a strong synchronization with the EEG burst suppression, particularly, in the gamma-band range. In contrast, the Glu, GABA and NE release and Ca2+ oscillations were coherent with the EEG gamma band activity only in the 5Cb during the pre-recovery of consciousness period. The optogenetic activation of Purkinje cells during burst suppression significantly facilitated emergence from anesthesia while the optogenetic inhibition prolonged the time to gaining consciousness. Conclusions: Our data indicate that cerebellar neuronal communication integrated with motor cortex through thalamus promotes consciousness recovery from anesthesia which may likely serve as arousal regulation.


Assuntos
Anestesia , Córtex Motor , Camundongos , Animais , Estado de Consciência/fisiologia , Sevoflurano/efeitos adversos , Células de Purkinje/fisiologia , Cálcio , Inconsciência/induzido quimicamente , Neurônios , Glutamatos/efeitos adversos , Ácido gama-Aminobutírico
4.
Br J Anaesth ; 131(3): 531-541, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37543435

RESUMO

BACKGROUND: Sleep disorders can profoundly affect neurological function. We investigated changes in social and anxiety-related brain functional connectivity induced by sleep deprivation, and the potential therapeutic effects of the general anaesthetics propofol and sevoflurane in rats. METHODS: Twelve-week-old male Sprague-Dawley rats were subjected to sleep deprivation for 20 h per day (from 14:00 to 10:00 the next day) for 4 consecutive weeks. They were free from sleep deprivation for the remaining 4 h during which they received propofol (40 mg kg-1 i.p.) or sevoflurane (2% for 2 h) per day or no treatment. These cohorts were instrumented for EEG/EMG recordings on days 2, 14, and 28. Different cohorts were used for open field and three-chambered social behavioural tests, functional MRI, nuclear magnetic resonance spectroscopy, and positron emission tomography imaging 48 h after 4 weeks of sleep deprivation. RESULTS: Propofol protected against sleep deprivation-induced anxiety behaviours with more time (44.7 [8.9] s vs 24.2 [4.1] s for the sleep-deprivation controls; P<0.001) spent in the central area of the open field test and improved social preference index by 30% (all P<0.01). Compared with the sleep-deprived rats, propofol treatment enhanced overall functional connectivity by 74% (P<0.05) and overall glucose metabolism by 30% (P<0.01), and improved glutamate kinetics by 20% (P<0.05). In contrast, these effects were not found after sevoflurane treatment. CONCLUSIONS: Unlike sevoflurane, propofol reduced sleep deprivation-induced social and anxiety-related behaviours. Propofol might be superior to sevoflurane for patients with sleep disorders who receive anaesthesia, which should be studied in clinical studies.


Assuntos
Anestésicos Inalatórios , Ansiedade , Éteres Metílicos , Propofol , Privação do Sono , Animais , Masculino , Ratos , Anestésicos Inalatórios/farmacologia , Anestésicos Intravenosos/farmacologia , Éteres Metílicos/farmacologia , Propofol/farmacologia , Ratos Sprague-Dawley , Sevoflurano/farmacologia , Sono , Comportamento Social
5.
Neural Regen Res ; 18(11): 2449-2458, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37282476

RESUMO

Sleep benefits the restoration of energy metabolism and thereby supports neuronal plasticity and cognitive behaviors. Sirt6 is a NAD+-dependent protein deacetylase that has been recognized as an essential regulator of energy metabolism because it modulates various transcriptional regulators and metabolic enzymes. The aim of this study was to investigate the influence of Sirt6 on cerebral function after chronic sleep deprivation (CSD). We assigned C57BL/6J mice to control or two CSD groups and subjected them to AAV2/9-CMV-EGFP or AAV2/9-CMV-Sirt6-EGFP infection in the prelimbic cortex (PrL). We then assessed cerebral functional connectivity (FC) using resting-state functional MRI, neuron/astrocyte metabolism using a metabolic kinetics analysis; dendritic spine densities using sparse-labeling; and miniature excitatory postsynaptic currents (mEPSCs) and action potential (AP) firing rates using whole-cell patch-clamp recordings. In addition, we evaluated cognition via a comprehensive set of behavioral tests. Compared with controls, Sirt6 was significantly decreased (P < 0.05) in the PrL after CSD, accompanied by cognitive deficits and decreased FC between the PrL and accumbens nucleus, piriform cortex, motor cortex, somatosensory cortex, olfactory tubercle, insular cortex, and cerebellum. Sirt6 overexpression reversed CSD-induced cognitive impairment and reduced FC. Our analysis of metabolic kinetics using [1-13C] glucose and [2-13C] acetate showed that CSD reduced neuronal Glu4 and GABA2 synthesis, which could be fully restored via forced Sirt6 expression. Furthermore, Sirt6 overexpression reversed CSD-induced decreases in AP firing rates as well as the frequency and amplitude of mEPSCs in PrL pyramidal neurons. These data indicate that Sirt6 can improve cognitive impairment after CSD by regulating the PrL-associated FC network, neuronal glucose metabolism, and glutamatergic neurotransmission. Thus, Sirt6 activation may have potential as a novel strategy for treating sleep disorder-related diseases.

6.
Front Neurosci ; 17: 1095718, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816134

RESUMO

Neuropathic pain (NP) is associated with sleep disturbances, which may substantially influence the quality of life. Clinical and animal studies demonstrated that neurotransmitter is one of the main contributors to cause sleep disturbances induced by NP. Recently, it was reported that P2X7 receptors (P2X7R) are widely expressed in microglia, which serves crucial role in neuronal activity in the pain and sleep-awake cycle. In this study, we adopted the chronic constriction injury (CCI) model to establish the progress of chronic pain and investigated whether P2X7R of microglia in cortex played a critical role in sleep disturbance induced by NP. At electroencephalogram (EEG) level, sleep disturbance was observed in mice treated with CCI as they exhibited mechanical and thermal hypersensitivity, and inhibition of P2X7R ameliorated these changes. We showed a dramatic high level of P2X7R and Iba-1 co-expression in the cortical region, and the inhibition of P2X7R also adversely affected it. Furthermore, the power of LFPs in ventral posterior nucleus (VP) and primary somatosensory cortex (S1) which changed in the CCI group was adverse after the inhibition of P2X7R. Furthermore, inhibition of P2X7R also decreased the VP-S1 coherence which increased in CCI group. Nuclear magnetic resonance demonstrated inhibition of P2X7R decreased glutamate (Glu) levels in thalamic and cortical regions which were significantly increased in the CCI mice. Our findings provide evidence that NP has a critical effect on neuronal activity linked to sleep and may built up a new target for the development of sleep disturbances under chronic pain conditions.

7.
Mol Psychiatry ; 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484244

RESUMO

Astrocytes constitute a major part of the central nervous system and the delineation of their activity patterns is conducive to a better understanding of brain network dynamics. This study aimed to develop a magnetic resonance imaging (MRI)-based method in order to monitor the brain-wide or region-specific astrocytes in live animals. Adeno-associated virus (AAVs) vectors carrying the human glial fibrillary acidic protein (GFAP) promoter driving the EGFP-AQP1 (Aquaporin-1, an MRI reporter) fusion gene were employed. The following steps were included: constructing recombinant AAV vectors for astrocyte-specific expression, detecting MRI reporters in cell culture, brain regions, or whole brain following cell transduction, stereotactic injection, or tail vein injection. The astrocytes were detected by both fluorescent imaging and Diffusion-weighted MRI. The novel AAV mutation (Site-directed mutagenesis of surface-exposed tyrosine (Y) residues on the AAV5 capsid) significantly increased fluorescence intensity (p < 0.01) compared with the AAV5 wild type. Transduction of the rAAV2/5 carrying AQP1 induced the titer-dependent changes in MRI contrast in cell cultures (p < 0.05) and caudate-putamen (CPu) in the brain (p < 0.05). Furthermore, the MRI revealed a good brain-wide alignment between AQP1 levels and ADC signals, which increased over time in most of the transduced brain regions. In addition, the rAAV2/PHP.eB serotype efficiently introduced AOP1 expression in the whole brain via tail vein injection. This study provides an MRI-based approach to detect dynamic changes in astrocytes in live animals. The novel in vivo tool could help us to understand the complexity of neuronal and glial networks in different pathophysiological conditions.

8.
Mol Neurobiol ; 59(6): 3635-3648, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35355195

RESUMO

Chronic pain during adolescence can lead to mental health disorders in adulthood, but the underlying mechanism is still unclear. Furthermore, the homeostasis of cerebral glucose metabolism and neurotransmitter metabolic kinetics are closely associated with cognitive development and pain progression. The present study investigated changes in cognitive function and glucose metabolism in adult rats, which had experienced chronic pain during their adolescence. Here, spared nerve injury (SNI) surgery was conducted in 4-week-old male rats. Mechanical nociceptive reflex thresholds were analyzed, and SNI chronic pain (SNI-CP) animals were screened. Based on animal behavioral tests (open field, three-chambered social, novel object recognition and the Y maze), the SNI-CP animals showed learning and memory impairment and anxiety-like behaviors, compared to SNI no chronic pain (SNI-NCP) animals. The cerebral glucose metabolism in the prefrontal cortex and hippocampus of adult SNI-CP animals was decreased with positron emission tomography/computed tomography. GABA2 and Glu4 levels in the metabolic kinetics study were significantly decreased in the hippocampus, frontal cortex, and temporal cortex, and the expression of GLUT3 and GLUT4 was also significantly downregulated in the prefrontal cortex and hippocampus of adult rats in the SNI-CP group. These findings suggest that the rats which suffered chronic pain during adolescence have lower cerebral glucose metabolism in the cortex and hippocampus, which could be related to cognitive function during the development of the central nervous system.


Assuntos
Dor Crônica , Disfunção Cognitiva , Neuralgia , Animais , Dor Crônica/complicações , Disfunção Cognitiva/complicações , Modelos Animais de Doenças , Glucose , Hiperalgesia/complicações , Masculino , Transtornos da Memória/complicações , Neuralgia/metabolismo , Ratos
9.
J Pharm Biomed Anal ; 204: 114240, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34246879

RESUMO

Energy metabolism and neurotransmission are necessary for sustaining normal life activities. Hence, neurological or psychiatric disorders are always associated with changes in neurotransmitters and energy metabolic states in the brain. Most studies have only focused on the most important neurotransmitters, particularly GABA and Glu, however, other metabolites such as NAA and aspartate which are also very important for cerebral function are rarely investigated. In this study, most of the metabolic kinetics information of different brain regions was investigated in awake rats using the [1H-13C]-NMR technique. Briefly, rats (n = 8) were infused [1-13C] glucose through the tail vein for two minutes. After 20 min of glucose metabolism, the animals were sacrificed and the brain tissue was extracted and treated. Utilizing the 1H observed/13C-edited nuclear magnetic resonance (POCE-NMR), the enrichment of neurochemicals was detected which reflected the metabolic changes in different brain regions and the metabolic connections between neurons and glial cells in the brain. The results suggest that the distribution of every metabolite differed from every brain region and the metabolic rate of NAA was relatively low at 8.64 ± 2.37 µmol/g/h. In addition, there were some correlations between several 13C enriched metabolites, such as Glu4-Gln4 (p = 0.062), Glu4-GABA2 (p < 0.01), Glx2-Glx3 (p < 0.001), Asp3-NAA3 (p < 0.001). This correlativity reflects the signal transmission between astrocytes and neurons, as well as the potential interaction between energy metabolism and neurotransmission. In conclusion, the current study systematically demonstrated the metabolic kinetics in the brain which shed light on brain functions and the mechanisms of various pathophysiological states.


Assuntos
Encéfalo , Vigília , Animais , Glucose , Cinética , Espectroscopia de Ressonância Magnética , Ratos , Ratos Sprague-Dawley
10.
Brain Res Bull ; 172: 79-88, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33895270

RESUMO

Age-related cognitive impairment is associated with diminished autophagy and progressively increased neuroinflammation. Histone acetylation has been shown to be a key process in sevoflurane-induced neurobehavioral abnormalities. Here, we investigated whether histone acetylation regulates the interaction between autophagy and the NLRP3 inflammasome in models of sevoflurane-induced cognitive impairment and explored the underlying molecular mechanisms. Aged C57BL/6 J mice and cultured primary hippocampal neurons were exposed to 3% sevoflurane for 2 h. Hippocampal tissue samples and hippocampal neurons were harvested. The processes of histone acetylation and autophagy and the activation of the NLRP3 inflammasome were observed using western blotting, immunofluorescence staining, and transmission electron microscopy. Suberoylanilide hydroxamic acid (SAHA), an inhibitor of histone deacetylases, increased histone H3 and H4 acetylation in both the mouse hippocampus and primary neurons. Concomitantly, sevoflurane upregulated components of the NLRP3 inflammasome (NLRP3, cleaved caspase-1, and IL-1ß) by promoting autophagic degradation in the aging brain. Cognitive deficits and inadequate autophagy induced by sevoflurane were reversed and NLRP3 inflammasome activation was inhibited by SAHA. Treatment with 3-MA, an autophagy inhibitor, eliminated the neuroprotective effects of SAHA on improving cognition in mice, activating autophagy and downregulating the NLRP3 inflammasome. Based on these results, histone acetylation activates autophagy plays an important role in inhibiting the activation of the NLRP3 inflammasome to protect the host from excessive neuroinflammation and sevoflurane-induced cognitive dysfunction in the aging brain.


Assuntos
Autofagia/efeitos dos fármacos , Disfunção Cognitiva/metabolismo , Histonas/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sevoflurano/efeitos adversos , Acetilação , Envelhecimento/metabolismo , Animais , Disfunção Cognitiva/induzido quimicamente , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Interleucina-1beta/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Vorinostat/farmacologia
11.
Neuroscience ; 432: 73-83, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32109532

RESUMO

The possibility that exposure to inhalation anaesthetics inhibits neurogenesis and results in memory deficits has attracted considerable interest over the past decade. This study was designed to investigate the mechanism of the sevoflurane exposure-induced decline in hippocampal neurogenesis. Young mice were anaesthetized with a gaseous mixture of 3.0% sevoflurane/60% oxygen 2 h daily for three consecutive days. Sodium butyrate (NaB) administration began 2 h prior to anaesthesia and continued daily until the end of behavioural tests. The Morris water maze (MWM) test was used to determine spatial learning and memory performance. We assessed the effect of repeated sevoflurane exposure on histone acetylation and the expression of brain-derived neurotropic factor (BDNF) and its receptor, tropomyosin-related kinase receptor B (TrkB), in the hippocampus by Western blot (WB). To detect neurogenesis, we first counted the number of neural stem cells (NSCs); we then assessed their proliferation level by immunohistochemistry and estimated the number of new-born cells by immunofluorescence. We found that sevoflurane induced learning and memory deficits in young mice 4 weeks after sevoflurane exposure and that NaB injection restored histone acetylation and improved the performance of the mice in the MWM. NaB also increased the number and proliferation of NSCs and neonatal cells, which were inhibited by sevoflurane. Concomitantly, BDNF and TrkB expression, which was decreased by sevoflurane, was also restored by NaB. Our study showed that sevoflurane affects long-term neurocognitive function and neurogenesis in young mice. Normalization of histone acetylation may alleviate the neurodevelopmental side effects of this anaesthetic.


Assuntos
Hipocampo , Histonas , Acetilação , Animais , Hipocampo/metabolismo , Histonas/metabolismo , Aprendizagem em Labirinto , Camundongos , Neurogênese , Sevoflurano/toxicidade
12.
Cell Mol Neurobiol ; 40(6): 879-895, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31884568

RESUMO

Sevoflurane, which is widely used in paediatric anaesthesia, induces neural apoptosis in the developing brain and cognitive impairment in young mammals. Glucose hypometabolism is the key pathophysiological modulator of cognitive dysfunction. However, the effects and mechanism of sevoflurane on cerebral glucose metabolism after its use as an anaesthetic and its complete elimination are still unknown. We therefore investigated the influence of sevoflurane on neuronal glucose transporter isoform 3 (GLUT3) expression, glucose metabolism and apoptosis in vivo and in vitro and on neurocognitive function in young mice 24 h after the third exposure to sevoflurane. Postnatal day 14 (P14) mice and neural cells were exposed to 3% sevoflurane 2 h daily for three days. We found that sevoflurane anaesthesia decreased GLUT3 gene and protein expression in the hippocampus and temporal lobe, consistent with a decrease in glucose metabolism in the hippocampus and temporal lobe observed by [18F] fluorodeoxyglucose positron emission tomography (18F-FDG PET). Moreover, sevoflurane anaesthesia increased the number of TUNEL-positive cells and the levels of Bax, cleaved caspase 3 and cleaved PARP and reduced Bcl-2 levels in the hippocampus and temporal lobe. Young mice exposed to sevoflurane multiple times also showed learning and memory impairment. In addition, sevoflurane inhibited GLUT3 expression in primary hippocampal neurons and PC12 cells. GLUT3 overexpression in cultured neurons ameliorated the sevoflurane-induced decrease in glucose utilization and increase in the apoptosis rate. These data indicate that GLUT3 deficiency may contribute to sevoflurane-induced learning and memory deficits in young mice.


Assuntos
Envelhecimento/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Aprendizagem , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Sevoflurano/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Encéfalo/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Glucose/metabolismo , Transportador de Glucose Tipo 3/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Células PC12 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...